X

Connect (X)

Tag Archives: Federated Wireless

Federated Wireless, Cambium Networks Form CBRS Partnership

Federated Wireless will provide service in the Citizens Broadband Radio Service (CBRS) to Cambium Networks’ fixed wireless broadband customers through a recently signed partnership. The two companies will leverage CBRS to enhance existing networks and introduce new fixed wireless broadband services for residential, enterprise, government and industrial networking applications.

The CBRS’s priority access license rules will allow WISPs to use shared spectrum to expand services and reach.  More than 80 WISPs participated in Cambium’s initial commercial deployment proposal submitted in September.

CBRS will allow WISPs and other network operators to expand their usable spectrum capacity from 50 megahertz to 150 megahertz.

Todd Gore, VP sales at Federated Wireless, said. “Our partnership with Cambium Networks enables WISPs to bring wireless services to both urban and rural customers more cost effectively via CBRS, whether or not they secure a PAL license.”

Testing of SAS for CBRS Kicks into High Gear

Earlier this month, companies and vendors from across the wireless industry came together at Verizon’s facility in Irving, Texas to test 4G LTE technology over the CBRS (Citizen Band Radio Spectrum) spectrum.  After the successful initial trials last year, Corning, Ericsson, Federated Wireless, Google, Nokia and Qualcomm Technologies are all collaborating in end-to-end system testing.

The CBRS band is made up of 150 MHz of 3.5 GHz shared spectrum, which until now has been primarily used by the federal government for radar systems.  The FCC authorized shared use of the spectrum with wireless small cells in 2016.  By using LTE Advanced technology, carrier aggregation and the spectrum access system (SAS), Verizon will be able to use this shared spectrum to add capacity to its network.

The end-to-end system tests are designed to accomplish several goals on the path to widespread commercial deployment:

  • To test and verify the Spectrum Access System algorithms from Google and Federated Wireless are consistently providing the best channel match from the SAS database.
  • To test data rates, modulations and the customer experience using CBRS spectrum.
  • To test interoperability between infrastructure providers to ensure seamless handoffs between CBRS spectrum and licensed spectrum for customers.
  • To test mobility handoffs on the CBRS spectrum.
  • To evaluate performance and data from LTE over CBRS spectrum.
  • For the end-to-end system testing, Federated Wireless and Google are providing prioritization through the SAS, which dynamically prioritizes traffic within the FCC’s spectrum sharing framework for this band.
  • Qualcomm Technologies is providing the Qualcomm Snapdragon LTE modem needed to access LTE on CBRS on mobile devices. Corning, Ericsson and Nokia have provided indoor and outdoor radio solutions which can run on the CBRS Spectrum.

Corning provided a SpiderCloud Enterprise RAN composed of a Services Node and SCRN-330 Radio Nodes. Ericsson’s Radio System solution is comprised of 4×4 MIMO, 4x20MHz Carrier Aggregation, including CBRS spectrum delivered over infrastructure aggregating Ericsson’s outdoor micro base station (Radio 2208 units) with the indoor B48 Radio Dot System in the same baseband (5216 units). Nokia provided FlexiZone Multiband Indoor BTS, FlexiZone Multiband Outdoor BTS and FlexiZone Controller.

In addition, participants in this ecosystem have set up private LTE sites which are using CBRS spectrum.  Private LTE networks are being engineered to meet the needs of enterprise customers who want greater control over their LTE solutions including private on-site servers, control over access to their designated LTE network, as well as increased throughput and reduced latency through dedicated backhaul.

The end-to-end system testing, which began in February and will continue over the next several weeks, has provided actionable insights and have significantly advanced CBRS spectrum deployment feasibility.

“The promise of the CBRS band and enabling the use of wider swaths of spectrum will make a big impact on carrying wireless data in the future.  These trials are critical to stress test the full system,” said Bill Stone, VP technology development and planning for Verizon.  “There are many players in the CBRS ecosystem and these successful trials ensure all the various parts perform together as an end-to-end system for our customers’ benefit.  We want to ensure devices efficiently use CBRS spectrum and that the new components effectively interact with the rest of the network.”

At the conclusion of this testing, equipment will be submitted for certification through the FCC.  Following that deployment can then begin.  Both commercial deployment of LTE on CBRS spectrum and devices that can access the CBRS spectrum are expected to begin in 2018.

CommScope, Ericsson Complete SAS Interoperability Testing for CBRS

To help ensure their readiness for commercial deployment in the CBRS wireless spectrum, CommScope and Ericsson have successfully completed interoperability testing of their equipment. The testing is one of the first successful interoperability tests using the Wireless Innovation Forum’s release 1.2 specifications.

“CommScope’s team of architects, developers and engineers have been building an industry-leading SAS for nearly two years,” said Tom Gravely, vice president of research and development, Network Solutions, CommScope. “Completion of interoperability testing with a major radio equipment provider such as Ericsson validates our SAS design and readies us for commercial deployment.”

The interoperability test confirmed that CommScope’s Spectrum Access System (SAS) and Ericsson’s radio infrastructure with CBRS spectrum support will work together as part of a CBRS network. The rigorous SAS–Citizens Broadband Radio Service Device (CBSD) interoperability testing used a battery of scenarios to verify that both products meet governmental requirements and industry protocols, as well as CommScope’s and Ericsson’s respective quality standards.

“Ericsson offers a comprehensive portfolio of CBRS network solutions that will help operators of all sizes deploy in this spectrum quickly and successfully,” said Paul Challoner, vice president of Network Product Solutions, Ericsson. “Additional milestones need to be reached for CBRS to become a reality, but we are pleased to complete interoperability testing with CommScope as part of the developmental process.”

In a CBRS network, a SAS and CBSD work together to ensure that the appropriate wireless signals are transmitted and received between the core network and end-user devices, while managing interference. An Environmental Sensing Capability (ESC) works with the SAS to identify the wireless signals of incumbent users to avoid interference from CBSDs. CommScope is one of four ESC operators conditionally approved by the FCC to provide SAS and ESC services.

 

 

Federated Wireless Announces CBRS Spectrum Controller, $42M in Funding

By The Editors of AGL

Federated Wireless has launched a spectrum controller for access, management and optimization of the FCC’s Citizens Broadband Radio Service (CBRS) 3.5GHz shared spectrum band.

Additionally, the firm closed on a $42M Series B round of funding, including investments from wireless industry ecosystem partners Charter Communications, American Tower, ARRIS International and GIC, Singapore’s sovereign wealth fund.

“Spectrum sharing will dramatically reduce the cost of delivering wireless services, with our technology serving as the onramp,” said Iyad Tarazi, CEO of Federated Wireless. “The commercial availability of our Spectrum Controller and the investment of the wireless industry in the company will enable us to cement our leadership position and capitalize on the rapid industry shift to shared spectrum set to begin this year.”

The Federated Wireless Spectrum Controller allows Mobile Operators, Cable Operators, Broadband Wireless Access Providers, Managed Service Providers and Enterprises across industries, to leverage CBRS when and where they need it. As a result, spectrum efficiency and utilization is not only increased, but the economics for delivering spectrum-based services and applications are dramatically improved for operators and enterprises. The technology allows for the bolstering of existing carrier and LTE networks, and for commercial and industrial properties to launch robust LTE networks for advanced applications.